How do you verify the identity #cot^2t/csct=csct-sint#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Jan 17, 2017 see below Explanation: Left Hand Side: #cot^2 t / csc t = (cos^2 t / sin^2t)/(1/sint)# #= cos^2 t / sin^2t * sint /1# #= cos^2 t / sin^cancel2t * cancel (sint )/1# #=cos^2 t /sint# Use identity: #sin^2t+cos^2t=1# #=(1-sin^2t)/sint# #=1/sint - sin^2t / sint# #=1/sint - sin^cancel 2t / cancel(sint)# #=csct - sint# #:.=# Right Hand Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 10631 views around the world You can reuse this answer Creative Commons License