How do you verify the identity (cosx-cosy)/(sinx+siny)+(sinx-siny)/(cosx+cosy)=0?

2 Answers
Jan 4, 2017

Put on a common denominator.

((cosx - cosy)(cosx + cosy) +(sinx - siny)(sinx + siny))/((sinx + siny)(cosx + cosy)) = 0

(cos^2x - cos^2y + sin^2x - sin^2y)/((sinx + siny)(cosx + cosy)) = 0

Use the pythagorean identity sin^2x + cos^2x = 1:

(1 - cos^2y - sin^2y)/((sinx + siny)(cosx + cosy)) = 0

Use the pythagorean identity mentioned above again, except this time in the form sin^2x = 1 - cos^2x.

(sin^2y - sin^2y)/((sinx + siny)(cosx + cosy)) = 0

0/((sinx + siny)(cosx + cosy)) = 0

0 = 0

LHS = RHS

Identity proved!

Hopefully this helps!

Jan 4, 2017

See below.

Explanation:

(cosx-cosy)/(sinx+siny)+(sinx-siny)/(cosx+cosy)=
=(cos^2x-cos^2y+sin^2x-sin^2y)/((sinx+siny)(cosx + cosy))=
=0/((sinx+siny)(cosx + cosy))=0