How do you verify the Identity: (1+cos x+ sinx)/(1+cos x-sin x)=sec x+tan x?

2 Answers
Mar 26, 2018

(1+cosx+ sinx) / (1+cosx-sinx)=secx+tanx | * (1+cosx-sinx)
1+cosx+ sinx=(1/cosx+sinx/cosx)* (1+cosx-sinx)
=(1+cosx-sinx)/cosx+(1+cosx-sinx)*sinx/cosx

(1+cosx-sinx)/cosx=color(blue)(secx+1-tanx)
(1+cosx-sinx)*sinx/cosx=color(red)(tanx+sinx-sinxtanx)

1+cosx+ sinx=color(blue)(secx+1cancel(-tanx))+color(red)(cancel(tanx)+sinx-sinxtanx)
1+cosx+ sinx=secx+1+sinx-sinxtanx|-1-sinx
cosx=secx-sinxtanx|*cosx
cos^2x=1-sin^2x|+sin^2x
cos^2x+sin^2x=1

Mar 27, 2018

LHS=(1+cosx+ sinx) / (1+cosx-sinx)

=(cosx(1+cosx+ sinx) )/ (cosx(1+cosx-sinx))

=(cosx(1+sinx)+ cos^2x) / (cosx(1+cosx-sinx))

=(cosx(1+sinx)+ (1-sin^2x) )/ (cosx(1+cosx-sinx))

=(cosx(1+sinx)+ (1-sinx)(1+sinx)) / (cosx(1+cosx-sinx))

=((1+sinx)(cosx+ 1-sinx)) / (cosx(1+cosx-sinx))

=(1+sinx)/cosx

=1/cosx+sinx/cosx

=secx+tanx=RHS