How do you verify the identify sinthetatantheta+costheta=sectheta?

3 Answers
Mar 9, 2018

See the proof below

Explanation:

We need

tantheta=sintheta/costheta

sin^2theta+cos^2theta=1

sectheta=1/costheta

Therefore,

LHS=sinthetatantheta+costheta

=sintheta*sintheta/costheta+costheta

=(sin^2theta+cos^2theta)/(costheta)

=1/costheta

=sectheta

=RHS

QED

Mar 9, 2018

Apply the identities tan(theta)=(sin theta)/(cos theta) and sec theta=1/(cos theta) along with the Pythagorean theorem.

Explanation:

Apply the identity tan(theta)=(sin theta)/(cos theta):
L.H.S.=sin theta*sin theta/(cos theta)+cos theta
=sin^2 theta/(cos theta)+cos theta
=(sin^2 theta+cos^2 theta)/(cos theta)

Apply the Pythagorean theorem sin^2 theta+cos^2 theta=1
=(sin^2 theta+cos^2 theta)/(cos theta)
=1/(cos theta)

By the definition of secants 1/(cos theta)=sec theta:
=sec theta
=R.H.S

Mar 9, 2018

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identities"

•color(white)(x)tantheta=sintheta/costheta" and "sectheta=1/costheta"

•color(white)(x)sin^2theta+cos^2theta=1

"Consider the left side"

rArrsinthetatantheta+costheta

=sinthetaxxsintheta/costheta+costheta

=sin^2theta/costheta+cos^2theta/costhetalarr"common denominator "costheta

=(sin^2theta+cos^2theta)/costheta

=1/costheta=sectheta=" right side "rArr" verified"