How do you verify tan (x+pi/2)= -cot x?

1 Answer
Feb 16, 2016

By applying the basic trigonometric relations. see below

Explanation:

head

Key-relation 1. tanx=sinx/cosx

Key-relation 2. cotx=1/tanx=cosx/sinx

Key-relation 3. cos(a+b)=cosa*cosb -sina*sinb

Key-relation 4. sin(a+b)=cosa*sinb + sina*cosb

Import results

Important result 1. cos (pi/2)=0
Important result 1. sin (pi/2)=1

Gathering

By using all the knowledge left so far and some mathematical tricks, we have:

sin(x+(pi/2))=cosx*sin(pi/2) + sinx*cos(pi/2)
sin(x+(pi/2))=cosx

Further:

cos(x+(pi/2))=cosx*cos(pi/2) - sinx*sin(pi/2)

cos(x+(pi/2))=- sinx

Finally:

tan(x+(pi/2))=sin(x+(pi/2))/cos(x+(pi/2))

tan(x+(pi/2))=-cosx/sinx=cotx

End of the proof!