How do you verify sinx/(1-cosx) + (1-cosx)/sinx = 2cscx?

1 Answer
Mar 6, 2018

See Below

Explanation:

LHS: sin x/(1-cos x) +(1-cosx)/sin x

=(sinx*sinx+(1-cosx)(1-cosx))/(sinx(1-cos x))->common denominator

=(sin^2 x+1-2cosx+cos^2x)/(sinx(1-cosx)

=(sin^2 x+cos^2x+1-2cosx)/(sinx(1-cosx))

=(1+1-2cosx)/(sinx(1-cosx))

=(2-2cosx)/(sinx(1-cosx))

=(2(1-cosx))/(sinx(1-cosx))

=(2(cancel(1-cosx)))/(sinx cancel((1-cosx)))

=2/sinx

=2*1/sinx

=2 csc x

=RHS