How do you verify sintheta+costheta=(2sin^2theta-1)/(sintheta-costheta)?

1 Answer
Nov 12, 2016

see below

Explanation:

sin theta +cos theta=(2sin^2theta-1)/(sin theta-costheta)

Left Side:=sin theta +cos theta

=(sin theta +cos theta)/1*(sintheta-costheta)/(sintheta-costheta)

=(sin^2theta-cos^2theta)/(sin theta -cos theta)

=(sin^2theta-(1-sin^2theta))/(sin theta -cos theta)

=(sin^2theta-1+sin^2theta)/(sin theta -cos theta)

=(sin^2theta+sin^2theta-1)/(sin theta -cos theta)

=(2sin^2theta-1)/(sin theta -cos theta)

:.=Right Side