How do you verify sin(x + pi/6) - cos(x + pi/3) = sqrt3 sin x?

2 Answers
Apr 8, 2018

It is given that the LHS is sin(x + pi/6) - cos(x + pi/3)

Applying, color(magenta)(sin(A+B) = sinAcosB + cosAsinB and color(red)(cos(A+B) = cosAcosB - sinAsinB

color(white)(dd

=> color(magenta)(sinxcos (pi/6) +cosxsin(pi/6))- (color(red)(cosxcos(pi/3) -sinxsin(pi/3)))

color(white)(dd

=> sinx(sqrt3/2) +cosx(1/2)- cosx(1/2) +sinx(sqrt3/2)

color(white)(dd

=>cancel 2xxsinx(sqrt3/cancel2)

=>sqrt3 sin x

Apr 8, 2018

See below.

Explanation:

Identities:

color(red)bb(sin(A+B)=sinAcosB+cosAsinB)

color(red)bb(cos(A+B)=cosAcosB-sinAsinB)

LHS:

sin(x+pi/6)=sin(x)cos(pi/6)+cos(x)sin(pi/6)

cos(x+pi/3)=cos(x)cos(pi/3)-sin(x)sin(pi/3)

sin(x+pi/6)-cos(x+pi/3)

sin(x)cos(pi/6)+cos(x)sin(pi/6)-[cos(x)cos(pi/3)-sin(x)sin(pi/3)]

sin(x)cos(pi/6)+cos(x)sin(pi/6)-cos(x)cos(pi/3)+sin(x)sin(pi/3)

cos(pi/6)=sqrt(3)/2
cos(pi/3)=1/2
sin(pi/6)=1/2
sin(pi/3)=sqrt(3)/2

sin(x)sqrt(3)/2+cos(x)(1/2)-cos(x)(1/2)+sin(x)(sqrt3)/2

2sin(x)sqrt(3)/2

sqrt(3)sin(x)

LHS-=RHS