Identities:
color(red)bb(sin(A+B)=sinAcosB+cosAsinB)
color(red)bb(cos(A+B)=cosAcosB-sinAsinB)
LHS:
sin(x+pi/6)=sin(x)cos(pi/6)+cos(x)sin(pi/6)
cos(x+pi/3)=cos(x)cos(pi/3)-sin(x)sin(pi/3)
sin(x+pi/6)-cos(x+pi/3)
sin(x)cos(pi/6)+cos(x)sin(pi/6)-[cos(x)cos(pi/3)-sin(x)sin(pi/3)]
sin(x)cos(pi/6)+cos(x)sin(pi/6)-cos(x)cos(pi/3)+sin(x)sin(pi/3)
cos(pi/6)=sqrt(3)/2
cos(pi/3)=1/2
sin(pi/6)=1/2
sin(pi/3)=sqrt(3)/2
sin(x)sqrt(3)/2+cos(x)(1/2)-cos(x)(1/2)+sin(x)(sqrt3)/2
2sin(x)sqrt(3)/2
sqrt(3)sin(x)
LHS-=RHS