How do you verify sin x + cos x * cot x = csc x?

1 Answer
Mar 2, 2016

Recall the following reciprocal, tangent, and Pythagorean identities:

1. color(orange)cotx=1/tanx

2. color(blue)cscx=1/sinx

3. color(purple)tanx=sinx/cosx

4. color(brown)(sin^2x+cos^2x)=1

Proving the Identity
1. Simplify by rewriting the left side of the identity in terms of sinx and cosx.

sinx+cosx*color(orange)cotx=color(blue)cscx

Left side:

sinx+cosx*1/color(purple)tanx

=sinx+cosx*1/(sinx/cosx)

=sinx+cosx*(1-:sinx/cosx)

=sinx+cosx*(1/1*cosx/sinx)

=sinx+cosx*(cosx/sinx)

2. Simplify by multiplying cosx by cosx/sinx.

=sinx+cos^2x/sinx

3. Find the L.C.M. (lowest common multiple) to rewrite the left hand side as a fraction.

=(sinx(sinx)+cos^2x)/sinx

4. Simplify.

=color(brown)((sin^2x+cos^2x))/sinx

=1/sinx

=color(green)(cscx)

:., left side=right side.