How do you verify sin x + cos x * cot x = csc x?
1 Answer
Mar 2, 2016
Recall the following reciprocal, tangent, and Pythagorean identities:
1 .color(orange)cotx=1/tanx
2 .color(blue)cscx=1/sinx
3 .color(purple)tanx=sinx/cosx
4 .color(brown)(sin^2x+cos^2x)=1
Proving the Identity
sinx+cosx*color(orange)cotx=color(blue)cscx
Left side:
sinx+cosx*1/color(purple)tanx
=sinx+cosx*1/(sinx/cosx)
=sinx+cosx*(1-:sinx/cosx)
=sinx+cosx*(1/1*cosx/sinx)
=sinx+cosx*(cosx/sinx)
=sinx+cos^2x/sinx
=(sinx(sinx)+cos^2x)/sinx
=color(brown)((sin^2x+cos^2x))/sinx
=1/sinx
=color(green)(cscx)