How do you verify sin 2x = (2 tan x)/(1+ tan² x)?

2 Answers
Apr 23, 2016

Modifying only the right hand side of the equation, we should first notice that the fraction's denominator is a form of the Pythagorean Identity:

sin^2x+cos^2x=1

=>" "sin^2x/cos^2x+cos^2x/cos^2x=1/cos^2x

=>" "color(blue)(barul(|color(white)(a/a)color(black)(tan^2x+1=sec^2x)color(white)(a/a)|

Thus, we see that we can rewrite the fraction:

(2tanx)/(1+tan^2x)=(2tanx)/(sec^2x)

Recalling that " "color(green)(barul(|color(white)(a/a)color(black)(sec^2x=1/cos^2x)color(white)(a/a)|" ", we see that

(2tanx)/sec^2x=(2tanx)/(1/cos^2x)

Now, instead of dividing by 1/cos^2x, note that this is the same as multiplying by cos^2x/1.

(2tanx)/(1/cos^2x)=2tanx*cos^2x

Rewrite 2tanx using the identity: " "color(purple)(barul(|color(white)(a/a)color(black)(tanx=sinx/cosx)color(white)(a/a)|

2tanx*cos^2x=(2sinx)/cosx*cos^2x

The cosx in the denominator will cancel with one of the cosx terms in the numerator:

(2sinx)/cosx*cos^2x=(2sinx)/color(red)(cancel(color(black)(cosx)))*cos^color(red)(cancel(color(black)(2)))x=2sinxcosx

This is the identity for sin2x, which is the left hand side of the original equation:

color(brown)(barul(|color(white)(a/a)color(black)(2sinxcosx=sin2x)color(white)(a/a)|

Thus, the equation is verified.

Jul 8, 2016

LHS=sin2x=(2sinxcosx)/1

=(2sinxcosx)/(cos^2x+sin^2x)

color(red)("Dividing both numerator and dinominator by "cos^2x

=((2sinxcosx)/cos^2x)/(cos^2x/cos^2x+sin^2x/cos^2x)

=(2tanx)/(1+tan^2x)=RHS