How do you verify sin 2x = (2 tan x)/(1+ tan² x)?
2 Answers
Modifying only the right hand side of the equation, we should first notice that the fraction's denominator is a form of the Pythagorean Identity:
sin^2x+cos^2x=1
=>" "sin^2x/cos^2x+cos^2x/cos^2x=1/cos^2x
=>" "color(blue)(barul(|color(white)(a/a)color(black)(tan^2x+1=sec^2x)color(white)(a/a)|
Thus, we see that we can rewrite the fraction:
(2tanx)/(1+tan^2x)=(2tanx)/(sec^2x)
Recalling that
(2tanx)/sec^2x=(2tanx)/(1/cos^2x)
Now, instead of dividing by
(2tanx)/(1/cos^2x)=2tanx*cos^2x
Rewrite
2tanx*cos^2x=(2sinx)/cosx*cos^2x
The
(2sinx)/cosx*cos^2x=(2sinx)/color(red)(cancel(color(black)(cosx)))*cos^color(red)(cancel(color(black)(2)))x=2sinxcosx
This is the identity for
color(brown)(barul(|color(white)(a/a)color(black)(2sinxcosx=sin2x)color(white)(a/a)|
Thus, the equation is verified.