Recall the reciprocal identities:
sectheta = 1/costheta
csctheta = 1/sintheta
cottheta = 1/tantheta
Also, the quotient identities will be helpful
tantheta = sintheta/costheta
cottheta = costheta/sintheta
Now, simplify both sides:
(1/costheta + 1/sintheta)(costheta - sin theta) = costheta/sintheta - sintheta/costheta
(sin theta + costheta)/(costhetasintheta)xx (costheta - sintheta) = (cos^2theta - sin^2theta)/(costhetasintheta
((sin theta + costheta)(costheta - sin theta))/(costhetasintheta) = (cos^2theta - sin^2theta)/(costhetasintheta)
(sin^2theta - cos^2theta)/(costhetasintheta) = (cos^2theta - sin^2theta)/(costhetasintheta)
Identity proved!!