How do you verify sec^2 x - cot^2 ( pi/2-x) =1?

1 Answer
May 5, 2016

see below

Explanation:

Use Properties:
cos(A-B)=cosAcosB+sinAsinB

sin(A-B)=sin A cos B-cos A sin B

Left Side:=sec^2x-cot^2(pi/2 -x)

=1/cos^2x - [(cos((pi/2)-x))/(sin((pi/2)-x))]^2

=1/cos^2x - [(cos(pi/2)cosx+sin(pi/2)sinx)/(sin(pi/2)cosx-cos(pi/2)sinx)]^2

=1/cos^2x - [(0*cosx+1*sinx)/(1*cosx-0*sinx)]^2

=1/cos^2x - [(sinx)/(cosx)]^2

=1/cos^2x - sin^2x/cos^2x

=(1-sin^2x)/cos^2x

=cos^2x/cos^2x

=1

=Right Side