How do you verify (cscx-cotx)^2=(1-cosx)/(1+cosx)(cscxcotx)2=1cosx1+cosx?

1 Answer
Nov 12, 2016

see below

Explanation:

(cscx-cotx)^2=(1-cosx)/(1+cosx)(cscxcotx)2=1cosx1+cosx

Left Side:=(cscx-cotx)^2=(cscxcotx)2

=(1/sinx -cosx/sinx)^2=(1sinxcosxsinx)2

=((1-cosx)/sinx)^2=(1cosxsinx)2

=(1-cosx)^2/(sinx)^2=(1cosx)2(sinx)2

=(1-cosx)^2/(sin^2x)=(1cosx)2sin2x

=(1-cosx)^2/(1-cos^2x)=(1cosx)21cos2x

=((1-cosx)(1-cosx))/((1-cosx)(1+cosx))=(1cosx)(1cosx)(1cosx)(1+cosx)

=(cancel(1-cosx)(1-cosx))/(cancel(1-cosx)(1+cosx))

=(1-cosx)/(1+cosx)

:.=Right Side