How do you verify cscx-1=cot^2x/(cscx+1)?

1 Answer
Nov 12, 2016

1/sinx - 1 = (cos^2x/sin^2x)/(1/sinx+ 1)

1/sinx- sinx/sinx= (cos^2x/sin^2x)/((1 + sinx)/sinx)

(1 - sinx)/sinx= cos^2x/sin^2x xx sinx/(1 + sinx)

(1 - sinx)/sinx= (1 - sin^2x)/sinx xx 1/(1 + sinx)

(1 - sinx)/sinx = ((1 + sinx)(1 - sinx))/sinx xx 1/(1 + sinx)

(1- sinx)/sinx = (1 - sinx)/sinx

LHS = RHS

Identity Proved!

Hopefully this helps!