How do you verify #csctheta-cottheta=1/(csctheta+cottheta)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Nov 12, 2016 see below Explanation: #csctheta-cot theta=1/(csctheta+cot theta)# Right Side:#=1/(csctheta+cot theta)# #=1/(csctheta+cot theta)*(csctheta-cot theta)/(csctheta-cot theta)# #=(csctheta-cot theta)/(csc^2theta-cot ^2theta)# #=(csctheta-cot theta)/1# Note: #csc^2theta-cot ^2theta=1# from the pythagorean identity #1+cot^2theta=csc^2theta# #=csctheta-cot theta# #:.=# Left Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1603 views around the world You can reuse this answer Creative Commons License