How do you verify csctheta-cottheta=1/(csctheta+cottheta)? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Nov 12, 2016 see below Explanation: csctheta-cot theta=1/(csctheta+cot theta) Right Side:=1/(csctheta+cot theta) =1/(csctheta+cot theta)*(csctheta-cot theta)/(csctheta-cot theta) =(csctheta-cot theta)/(csc^2theta-cot ^2theta) =(csctheta-cot theta)/1 Note: csc^2theta-cot ^2theta=1 from the pythagorean identity 1+cot^2theta=csc^2theta =csctheta-cot theta :.= Left Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 1816 views around the world You can reuse this answer Creative Commons License