How do you verify (1-sinx)/(1+sinx)=sec^2x-2secxtanx+tan^2x?

1 Answer
Apr 24, 2018

Please see the proof below

Explanation:

We need

sin^2x+cos^2x=1

secx=1/cosx

tanx=sinx/cosx

Therefore,

LHS=(1-sinx)/(1+sinx)

=((1-sinx)(1-sinx))/((1+sinx)(1-sinx))

=(1-sinx)^2/(1-sin^2x)

=(1-2sinx+sin^2x)/(cos^2x)

=1/cos^2x-2sinx/cos^2x+sin^2x/cos^2x

=sec^2x-2secxtanx+tan^2x

=RHS

QED