How do you verify (1+sinx)/(1-sinx) - (1-sinx)/(1+sinx)=4tanxsecx?

1 Answer
Nov 1, 2015

See explanation.

Explanation:

[1]" "(1+sinx)/(1-sinx)-(1-sinx)/(1+sinx)

Combine the two terms by making them have the same denominator.

[2]" "=((1+sinx)/(1-sinx))((1+sinx)/(1+sinx))-((1-sinx)/(1+sinx))((1-sinx)/(1-sinx))

[3]" "=(1+2sinx+sin^2x)/(1-sin^2x)-(1-2sinx+sin^2x)/(1-sin^2x)

[4]" "=(1+2sinx+sin^2x-1+2sinx-sin^2x)/(1-sin^2x)

[5]" "=(4sinx)/(1-sin^2x)

Pythagorean Identity: 1-sin^2theta=cos^2theta

[6]" "=(4sinx)/(cos^2x)

[7]" "=(4sinx)/((cosx)(cosx))

Quotient Identity: sintheta/costheta=tantheta

[8]" "=(4tanx)/(cosx)

Reciprocal Identity: 1/costheta=sectheta

[9]" "=4tanxsecx

color(blue)("":.(1+sinx)/(1-sinx)-(1-sinx)/(1+sinx)=4tanxsecx)