How do you verify (1-sin)/(1+sin) = (sec-tan)^2?

1 Answer
Oct 12, 2016

see below

Explanation:

(1-sinx)/(1+sinx) = (secx-tanx)^2

Left Side : =(1-sinx)/(1+sinx)

=(1-sinx)/(1+sinx) * (1-sinx)/(1-sinx)

=(1-2sinx+sin^2x)/(1-sin^2x)

=(1-2sinx+sin^2x)/cos^2x

=1/cos^2x-(2sinx)/cos^2x+sin^2x/cos^2x

=1/cos^2x-2 * 1/cosx sinx/cosx+sin^2x/cos^2x

=sec^2x-2secxtanx+tan^2x

=(secx-tanx)(secx-tanx)

=(secx-tanx)^2

:.= Right Side