How do you verify 1+cos2xsin2x=cotx? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Massimiliano Jul 3, 2015 Since cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1 and sin2x=2sinxcosx then: 1+2cos2x−12sinxcosx=cotx⇒ 2cos2x2sinxcosx=cotx⇒ cosxsinx=cotx⇒ cotx=cotx. Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 31927 views around the world You can reuse this answer Creative Commons License