How do you solve x^2 + 4x - 9 = 0x2+4x−9=0 by completing the square?
1 Answer
Jan 11, 2017
Explanation:
The difference of squares identity can be written:
a^2-b^2 = (a-b)(a+b)a2−b2=(a−b)(a+b)
Hence we find:
0 = x^2+4x-90=x2+4x−9
color(white)(0) = x^2+4x+4-130=x2+4x+4−13
color(white)(0) = (x+2)^2-(sqrt(13))^20=(x+2)2−(√13)2
color(white)(0) = ((x+2)-sqrt(13))((x+2)+sqrt(13))0=((x+2)−√13)((x+2)+√13)
color(white)(0) = (x+2-sqrt(13))(x+2+sqrt(13))0=(x+2−√13)(x+2+√13)
Hence:
x = -2+-sqrt(13)x=−2±√13