How do you solve x^2 + 4x - 9 = 0x2+4x9=0 by completing the square?

1 Answer
Jan 11, 2017

x = -2+-sqrt(13)x=2±13

Explanation:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

Hence we find:

0 = x^2+4x-90=x2+4x9

color(white)(0) = x^2+4x+4-130=x2+4x+413

color(white)(0) = (x+2)^2-(sqrt(13))^20=(x+2)2(13)2

color(white)(0) = ((x+2)-sqrt(13))((x+2)+sqrt(13))0=((x+2)13)((x+2)+13)

color(white)(0) = (x+2-sqrt(13))(x+2+sqrt(13))0=(x+213)(x+2+13)

Hence:

x = -2+-sqrt(13)x=2±13