How do you solve using the completing the square method x^2 - 6x + 10 = 0x26x+10=0?

1 Answer
Jan 31, 2017

x=3+-ix=3±i

Explanation:

x^2-6x+10=0x26x+10=0

consider #coefficient of x, divide by 2

(x-6/2)^2 -(-6/2)^2+10=0(x62)2(62)2+10=0

(x-3)^2-9+10=0(x3)29+10=0

(x-3)^2+1=0(x3)2+1=0

(x-3)^2=-1(x3)2=1

i^2=-1i2=1, then i=+-sqrt(-1)i=±1

x-3 = +-sqrt(-1)=+-ix3=±1=±i

x=3+-ix=3±i