How do you solve using the completing the square method x^2 + 3x - 10 = 0?

1 Answer
Apr 13, 2016

color(blue)(y_("intercept")=-10)

color(blue)("Vertex" -> (x,y)->(-3/2,-49/4))

color(blue)(x_("intercepts")=-5 or +2)

Explanation:

Given:" "x^2+3x-10=0.......................(1)

color(blue)("Determine "y_("intercept"))

Read directly from equation (1)

color(blue)(y_("intercept")=-10)

color(brown)("'~~~~~~~~~~~~~ Tip! ~~~~~~~~~~~~~~~~~~~~")
color(green)("As the equation is already in the form ")

color(green)(y=a(x^2+b/a x) + c)

color(green)("In this case "a=1)

color(green)(x_("vertex")=(-1/2)xxb/a = -3/2)

color(brown)("'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")

color(blue)("Step 1")
Write equation (1) as (x^2+3x)-10=0

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 2")

Add the adjustment constant k
(x^2+3x)-10+k=0

'~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 3")
Move the power from x^2 to outside the bracket
(x+3x)^2-10+k=0
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 3")

Remove the x" from "3x
(x+3)^2-10+k=0

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 4")

Multiply the 3 inside the bracket by 1/2
(x+3/2)^2-10+k=0
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 4")
If we multiply out the bracket we end up with an additional term to those in the original equation. That term is (3/2)^2 derived from (?+3/2)(?+3/2)=(3/2)^2. This term must be removed which is achieved by making k=-(3/2)^2

So now we have

color(brown)((x+3/2)^2-10+k=0)color(green)(->(x+3/2)^2-10-(3/2)^2=0)

color(blue)("Completing the square "->)color(magenta)( (x+3/2)^2-49/4=0)......................(2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
" "color(blue)("Vertex" -> (x,y)->(-3/2,-49/4))

From equation (2)

(x+3/2)^2=49/4

Square rooting both sides

x+3/2= +-sqrt(49)/sqrt(4)

color(blue)(x_("intercepts")=-3/2+-7/2 = -5 or +2)#
Tony B