How do you solve using the completing the square method x^2+2x-5=0x2+2x5=0?

1 Answer
Aug 6, 2016

x=-1-sqrt6x=16 or x=-1+sqrt6x=1+6

Explanation:

x^2+2x-5=0x2+2x5=0

Now, recalling the identity (x+a)^2=x^2+2ax+a^2(x+a)2=x2+2ax+a2 and comparing it with x^2+2xx2+2x, we need to add and subtract (2/1)^2(21)2 to complete square. Hence x^2+2x-5=0x2+2x5=0 is

x^2+2x+1-1-5=0x2+2x+115=0 or

(x^2+2x+1)-6=0(x2+2x+1)6=0 or

(x+1)^2-(sqrt6)^2(x+1)2(6)2 or

(x+1+sqrt6)(x+1-sqrt6)=0(x+1+6)(x+16)=0

i.e. x=-1-sqrt6x=16 or x=-1+sqrt6x=1+6