How do you solve using the completing the square method x2+2x15=0?

2 Answers
Apr 4, 2016

The solutions are:
x=3 or x=5

Explanation:

x2+2x15=0

x2+2x=15

To write the Left Hand Side as a Perfect Square, we add 1 to both sides:

x2+2x+1=15+1

x2+2x1+12=16

Using the Identity (a+b)2=a2+2ab+b2, we get

(x+1)2=16

x+1=16 or x+1=16

x=41=3 or x=41=5

Apr 4, 2016

+x=1±4

x=+3 or 5

Explanation:

The equation in standard form is:
y=ax2+bx+c

The equation in vertex form is:
y=a(x+b2a)2+c[(b2)2]

The [(b2)2] corrects the error produced by(b2a)2

They are different versions of the same thing!
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Solving your question

a=1 ; b=2 ; c=15 giving

y=(x+1)2151

y=(x+1)216

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Set the vertex form equation as equal to zero

0=(x+1)216

(x+1)2=+16

Taking the square root of both sides

±(x+1)=±16

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the case (x+1)

x1=±4

x=+1±4

Multiply both sides by (-1)

+x=1±4

x=+3 or 5

'....................................................................

Consider the case +(x+1)

x=1±4

Same as for (x+1)
'...................................................