How do you solve using the completing the square method 2x2+6x−5=0?
1 Answer
Apr 15, 2018
Explanation:
using the method of completing the square
∙ the coefficient of the x2 term must be 1
factor out 2
⇒2(x2+3x−52)=0
∙ add/subtract (12coefficient of the x-term)2 to
x2+3x
⇒2(x2+2(32)x+94−94−52)=0
⇒2(x+32)2+2(−94−52)=0
⇒2(x+32)2−192=0
⇒2(x+32)2=192
⇒(x+32)2=194
take the square root of both sides
√(x+32)2=±√194←note plus or minus
⇒x+32=±12√19
⇒x=−32±12√19←exact solutions