How do you solve r^2 - 9r - 38 = -9r29r38=9 by completing the square?

1 Answer
May 19, 2015

Given r^2-9r-38=-9r29r38=9

First add 9 to both sides to get:

r^2-9r-29=0r29r29=0

Then

0 = r^2-9r-290=r29r29

= r^2-9r+81/4-81/4-29=r29r+81481429

= (r-9/2)^2-(81/4+29)=(r92)2(814+29)

= (r-9/2)^2-(81/4+116/4)=(r92)2(814+1164)

= (r-9/2)^2-197/4=(r92)21974

Adding 197/41974 to both ends of this equation, we find:

(r-9/2)^2 = 197/4(r92)2=1974

So:

r-9/2 = +-sqrt(197/4) = +-sqrt(197)/sqrt(4) = +-sqrt(197)/2r92=±1974=±1974=±1972

Add 9/292 to both sides to get:

r = 9/2+-sqrt(197)/2 = (9+-sqrt(197))/2r=92±1972=9±1972

In general:

ar^2+br+c = a(r+b/(2a))^2 + (c - b^2/(4a))ar2+br+c=a(r+b2a)2+(cb24a)

which is zero when

a(r+b/(2a))^2 = (b^2/(4a) - c) = (b^2 - 4ac)/(4a)a(r+b2a)2=(b24ac)=b24ac4a

and hence

(r+b/(2a))^2 = (b^2 - 4ac)/(4a^2)(r+b2a)2=b24ac4a2

so

r+b/(2a) = +-sqrt((b^2 - 4ac)/(4a^2)) = +-sqrt(b^2 - 4ac)/sqrt(4a^2)r+b2a=±b24ac4a2=±b24ac4a2

= +-sqrt(b^2-4ac)/(2a)=±b24ac2a

Subtracting b/(2a)b2a from both sides we get:

r = -b/(2a)+-sqrt(b^2-4ac)/(2a) = (-b +- sqrt(b^2-4ac))/(2a)r=b2a±b24ac2a=b±b24ac2a

Does that look familiar?