In 9x^2-12x-14=09x2−12x−14=0, while 9x^2=(3x)^29x2=(3x)2, to complete the square, recall the identity (x+-a)^2=x^2+-2ax+a^2(x±a)2=x2±2ax+a2.
As -12x=-2×(3x)×2−12x=−2×(3x)×2, we need to add 2^222 to make it complete square.
Hence, 9x^2-12x-14=09x2−12x−14=0 can be written as ((3x)^2-2×(3x)×2+2^2)-4-14=0((3x)2−2×(3x)×2+22)−4−14=0 or
(3x-2)^2-18=0(3x−2)2−18=0, which is equivalent to
(3x-2)^2-(sqrt18)^2=0(3x−2)2−(√18)2=0
and using identity (a-b)^2=(a+b)(a-b)(a−b)2=(a+b)(a−b) we can write the equation as
(3x-2+sqrt18)(3x-2-sqrt18)=0(3x−2+√18)(3x−2−√18)=0
i.e. either 3x-2+sqrt18=03x−2+√18=0 or 3x-2-sqrt18=03x−2−√18=0.
Now as sqrt18=3sqrt2√18=3√2
either x=2/3-sqrt2x=23−√2 or x=2/3+sqrt2x=23+√2