How do you solve 9x^2-12x-14=09x212x14=0 by completing the square?

1 Answer
Aug 13, 2016

x=2/3-sqrt2x=232 or x=2/3+sqrt2x=23+2

Explanation:

In 9x^2-12x-14=09x212x14=0, while 9x^2=(3x)^29x2=(3x)2, to complete the square, recall the identity (x+-a)^2=x^2+-2ax+a^2(x±a)2=x2±2ax+a2.

As -12x=-2×(3x)×212x=2×(3x)×2, we need to add 2^222 to make it complete square.

Hence, 9x^2-12x-14=09x212x14=0 can be written as ((3x)^2-2×(3x)×2+2^2)-4-14=0((3x)22×(3x)×2+22)414=0 or

(3x-2)^2-18=0(3x2)218=0, which is equivalent to

(3x-2)^2-(sqrt18)^2=0(3x2)2(18)2=0

and using identity (a-b)^2=(a+b)(a-b)(ab)2=(a+b)(ab) we can write the equation as

(3x-2+sqrt18)(3x-2-sqrt18)=0(3x2+18)(3x218)=0

i.e. either 3x-2+sqrt18=03x2+18=0 or 3x-2-sqrt18=03x218=0.

Now as sqrt18=3sqrt218=32

either x=2/3-sqrt2x=232 or x=2/3+sqrt2x=23+2