How do you solve 8x^2 + 14x + 5 = 08x2+14x+5=0 by completing the square?

3 Answers
May 8, 2018

x=-5/4" or "x=-1/2x=54 or x=12

Explanation:

"using the method of "color(blue)"completing the square"using the method of completing the square

• " the coefficient of the "x^2" term must be 1" the coefficient of the x2 term must be 1

"factor out 8"factor out 8

rArr8(x^2+7/4x+5/8)=08(x2+74x+58)=0

• "add/subtract "(1/2"coefficient of the x-term")^2" to"add/subtract (12coefficient of the x-term)2 to
x^2+7/4xx2+74x

8(x^2+2(7/8)xcolor(red)(+49/64)color(red)(-49/64)+5/8)=08(x2+2(78)x+49644964+58)=0

rArr8(x+7/8)^2+8(-49/64+5/8)=08(x+78)2+8(4964+58)=0

rArr8(x+7/8)^2-9/8=08(x+78)298=0

rArr8(x+7/8)^2=9/88(x+78)2=98

"divide both sides by 8"divide both sides by 8

rArr(x+7/8)^2=9/64(x+78)2=964

color(blue)"take the square root of both sides"take the square root of both sides

sqrt((x+7/8)^2)=+-sqrt(9/64)larrcolor(blue)"note plus or minus"(x+78)2=±964note plus or minus

rArrx+7/8=+-3/8x+78=±38

"subtract "7/8" from both sides"subtract 78 from both sides

rArrx=-7/8+-3/8x=78±38

rArrx=-7/8-3/8=-10/8=-5/4x=7838=108=54

"or "x=-7/8+3/8=-4/8=-1/2or x=78+38=48=12

May 8, 2018

x= -10/8=-5/4x=108=54
x=-4/8=-1/2x=48=12

Explanation:

Given: color(green)(y=0=8x^2+14x+5)y=0=8x2+14x+5

Write as:
color(green)(0=8(x^2+14/8x)+5 color(white)("ddd")->color(white)("ddd")0=8(x^2+7/4x)+5)0=8(x2+148x)+5dddddd0=8(x2+74x)+5

The 'perfect' square related to x^2+7/4x " is " (x+7/8)^2x2+74x is (x+78)2

but 8(x+7/8)^28(x+78)2 introduces the value of color(red)(8xx(7/8)^2)8×(78)2 that is not in the original equation. We put it in so we have to take it out.

color(green)(0=8(x^2+7/4x)+5 )0=8(x2+74x)+5

color(green)(0= 8(x+7/8)^2color(red)(-[8xx(7/8)^2 ] )+5 )0=8(x+78)2[8×(78)2]+5

color(green)(0=8(x+7/8)^2-9/8 )0=8(x+78)298
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Check")Check

8(x+7/8)^2-9/8 8(x+78)298
8(x^2+7/4x +49/64)-9/88(x2+74x+4964)98

8x^2+14x+49/8-9/88x2+14x+49898

8x^2+14x +40/88x2+14x+408

8x^2+14x+58x2+14x+5 as required!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(green)(0=8(x+7/8)^2-9/8color(white)("dd") ->color(white)("dd")+9/8=8(x+7/8)^20=8(x+78)298dddd+98=8(x+78)2

color(green)( color(white)("ddddddddddddddddddd")->color(white)("dddd") 9/64=(x+7/8)^2)ddddddddddddddddddddddd964=(x+78)2

color(green)(color(white)("ddddddddddddddddddd")->color(white)("d.d")+-3/8=color(white)("d")x+7/8) dddddddddddddddddddd.d±38=dx+78

color(green)(color(white)("ddddddddddddddddddd")->color(white)("ddd.dd")x=-7/8+-3/8)dddddddddddddddddddddd.ddx=78±38

x= -10/8=-5/4x=108=54
x=-4/8=-1/2x=48=12

Tony B

May 8, 2018

x=-1/2 or x=-5/4x=12orx=54

Explanation:

We have,

8x^2+14x+5=08x2+14x+5=0

=>8x^2+14x=-58x2+14x=5

=>8x^2+14x+K=K-5...to(A)

Now we have to find K,such that, (8x^2+14x+K)is a square.

Here,

I^(st)term=8x^2

II^(nd) term=14x

III^(rd)term=K

Formula for color(red)(III^(rd)term=(II^(nd)term)^2/(4xxI^(st)term)...to(psi)

i.e. K=(14x)^2/(4xx8x^2)=(196x^2)/(32x^2)=49/8

So,from(A),we get

8x^2+14x+49/8=49/8-5

(sqrt8x)^2+2(sqrt8x)(7/sqrt8)+(7/sqrt8)^2=9/8

(sqrt8x+7/sqrt8)^2=(3/sqrt8)^2

=>sqrt8x+7/sqrt8=+-3/sqrt8

=>8x+7=+-3

=>8x+7=3 or 8x+7=-3

=>8x=3-7 or 8x=-3-7

=>8x=-4 or 8x=-10

=>x=-1/2 or x=-5/4

=>x=-0.5 or x=-1.25

Note: Formula color(red)((psi) for color(red)(III^(rd)term, is always true.