How do you solve #7(t^2+5t-9)+t=t(7t-2)+13#?
1 Answer
May 27, 2017
Explanation:
#"the first step is to distribute the brackets on both sides"#
#rArr7t^2+35t-63+t=7t^2-2t+13#
#7t^2+36t-63=7t^2-2t+13larr" simplify left side"#
#"collect variables on left and numeric values on right"#
#cancel(7t^2)cancel(-7t^2)+36t+2t=13+63#
#rArr38t=76#
#"divide both sides by 38"#
#(cancel(38)color(white)(x)t)/cancel(38)=76/38#
#rArrt=2#
#color(blue)"As a check"# Substitute this value into the equation and if both sides equate then it is the solution.
#"left "=7(4+10-9)+2=(7xx5)+2=37#
#"right "=2(14-2)+13=(2xx12)+13=37#
#rArrt=2" is the solution"#