How do you solve 3x^2+6x-2=03x2+6x2=0 by completing the square?

1 Answer
Jul 1, 2017

x = -1 +-sqrt(5/3)x=1±53

Explanation:

We have:

3x^2+6x-2=0 3x2+6x2=0

The standard steps to complete the square on quadratic expression are as follows:

Step 1 - Factor out the quadratic coefficient, thus:

3x^2+6x-2=3{x^2+2x-2/3} 3x2+6x2=3{x2+2x23}

Step 2 - Factor 1/212 of the xx coefficient to form a perfect square, and subtract its square, and simplifiy, thus:

3x^2+6x-2 = 3{(x+2/2)^2-(2/2)^2-2/3} 3x2+6x2=3{(x+22)2(22)223}
" " = 3{(x+1)^2-1-2/3} =3{(x+1)2123}
" " = 3{(x+1)^2-5/3} =3{(x+1)253}

So now returning to the quadratic equation , we have;

3x^2+6x-2=0 3x2+6x2=0

:. 3{(x+1)^2-5/3} = 0
:. (x+1)^2-5/3 = 0
:. (x+1)^2 = 5/3
:. x+1 = +-sqrt(5/3)
:. x = -1 +-sqrt(5/3)