How do you solve 3x^2 + 10x - 2 = 0 3x2+10x−2=0 by completing the square?
1 Answer
Oct 7, 2017
x=sqrt31/9-5/3x=√319−53
x=-sqrt31/9-5/3x=−√319−53
Explanation:
Given -
3x^2+10x-2=03x2+10x−2=0
Take the constant term to right-hand side
3x^2+10x=23x2+10x=2
Divide both sides by 3
(3x^2)/3+(10x)/3=2/33x23+10x3=23
x^2+10/3x=2/3x2+103x=23
Divide the coefficient of
x^2+10/3x+100/36=2/3+100/36=(24+100)/36=124/36=31/9x2+103x+10036=23+10036=24+10036=12436=319
(x+10/6)^2=31/9(x+106)2=319
x+5/3=+-sqrt(31/9)= +-sqrt31/3x+53=±√319=±√313
x=sqrt31/9-5/3x=√319−53
x=-sqrt31/9-5/3x=−√319−53