How do you solve 2x - 6 = -5x^2 by completing the square?

1 Answer
Jul 18, 2016

x=-1.313 to 3 decimal places

x=+0.914 to 3 decimal places

Explanation:

Standard form -> y=ax^2+bx+c

Converting the given equation to standard form gives

y=0=5x^2+2x-6

But y=0 is a specific case

So for the general case we have:

y=5x^2+2x-6
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the process of completing the square introduces an error. It ads a term to the original equation. Thus this term must be removed. This is achieved by introducing a correction.

Let k be the correction value.

color(blue)("Step 1")

write as:" "y=5(x^2+2/5x)-6

Include the correction

y=5(x^2+2/5x)-6+k

At this stage k=0 as we have not changed the overall values.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 2")

Move the power from x^2 to outside the brackets

y=5(x+2/5x)^2-6+k larr" now "k" starts to have a value"
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 3")

Remove the x from 2/5x

y=5(x+2/5)^2-6+k
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 4")

Halve the 2/5

y=5(x+2/10)^2-6+k
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the point where we find the value of k
The error comes from: 5(2/10)^2. This is an added term and needs to be removed.

So 5(2/10)^2+k=0

=>color(red)(k=-(5xx4)/100" "=" "-20/100" " =" " -1/5)

So we now have:

y=5(x+2/10)^2-6color(red)(-1/5)

color(white)(2/2)

" "color(blue)(ul(bar(|color(white)(2/2)y=5(x+2/10)^2-31/5color(white)(2/2)|)))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Set y=0 then we have

+31/25=(x+2/10)^2

=>x+2/10=+-sqrt(31/25)

=>x=-2/10+-sqrt(31/25)

=>x=-2/10+-sqrt(31)/5

x=-1.313 to 3 decimal places

x=+0.914 to 3 decimal places

Tony B