How do you solve 2x^2 - 6x +1 = 02x2−6x+1=0 by completing the square?
1 Answer
Jan 21, 2017
x=sqrt(7/4)+3/2x=√74+32
x=-sqrt(7/4)+3/2x=−√74+32
Explanation:
Given -
2x^2-6x+1=02x2−6x+1=0
2x^2-6x=-12x2−6x=−1
(2x^2)/2-(6x)/2=(-1)/22x22−6x2=−12
x^2-3x=(-1)/2x2−3x=−12
x^2-3x+9/4=(-1)/2+9/4x2−3x+94=−12+94
(x-3/2)^2=(-2+9)/4=7/4(x−32)2=−2+94=74
(x-3/2)=+-sqrt(7/4)(x−32)=±√74
x=sqrt(7/4)+3/2x=√74+32
x=-sqrt(7/4)+3/2x=−√74+32