How do you solve 2x^2-3x-14=02x2−3x−14=0 by completing the square?
1 Answer
Explanation:
The difference of squares identity can be written:
A^2-B^2 = (A-B)(A+B)A2−B2=(A−B)(A+B)
We will use this with
Given:
2x^2-3x-14 = 02x2−3x−14=0
To avoid fractions as much as possible, let us premultiply this quadratic by
So:
0 = 8(2x^2-3x-14)0=8(2x2−3x−14)
color(white)(0) = 16x^2-24x-1120=16x2−24x−112
color(white)(0) = (4x)^2-2(4x)(3)+9-1210=(4x)2−2(4x)(3)+9−121
color(white)(0) = (4x-3)^2-11^20=(4x−3)2−112
color(white)(0) = ((4x-3)-11)((4x-3)+11)0=((4x−3)−11)((4x−3)+11)
color(white)(0) = (4x-14)(4x+8)0=(4x−14)(4x+8)
color(white)(0) = (2(2x-7))(4(x+2))0=(2(2x−7))(4(x+2))
color(white)(0) = 8(2x-7)(x+2)0=8(2x−7)(x+2)
Hence:
x=7/2" "x=72 or" "x=-2 x=−2