How do you simplify the expression ((x^2-4x-32)/(x+1))/((x^2+6x+8)/(x^2-1))x24x32x+1x2+6x+8x21?

1 Answer
Dec 26, 2016

The answer is =((x-1)(x-8))/(x+2)=(x1)(x8)x+2

Explanation:

Let's do some factorisations

x^2-4x-32=(x+4)(x-8)x24x32=(x+4)(x8)

x^2+6x+8=(x+2)(x+4)x2+6x+8=(x+2)(x+4)

x^2-1=(x+1)(x-1)x21=(x+1)(x1)

Therefore,

((x^2-4x-32)/(x+1))/((x^2+6x+8)/(x^2-1))=(((x+4)(x-8))/((x+1)))/(((x+2)(x+4))/((x+1)(x-1))x24x32x+1x2+6x+8x21=(x+4)(x8)(x+1)(x+2)(x+4)(x+1)(x1)

=(cancel(x+4)(x-8))/(cancel(x+1))*(cancel(x+1)(x-1))/((x+2)cancel(x+4))

=((x-1)(x-8))/(x+2)