How do you simplify (1- tan^2θ) /( 1+ tan^2 θ)?

2 Answers
Mar 25, 2018

2cos^2theta-1 or cos2theta

Explanation:

Using the identities:
1+tan^2theta= sec^2theta
1/sectheta= costheta
tantheta= sintheta/costheta
sin^2theta= 1-cos^2theta
2cos^2theta-1= cos2theta

Start:
(1-tan^2theta)/(1+tan^2theta)=

(1-tan^2theta)/(sec^2theta)=

Split the numerator:

1/sec^2theta-tan^2theta/sec^2theta=

cos^2theta-sin^2theta/cancel(cos^2theta)*cancel(cos^2theta)=

cos^2theta-(1-cos^2theta)=

2cos^2theta-1=

cos2theta

Mar 25, 2018

cos2theta

Explanation:

"using the "color(blue)"trigonometric identities"

•color(white)(x)tantheta=sintheta/costheta

•color(white)(x)sin^2theta+cos^2theta=1

•color(white)(x)cos^2theta-sin^2theta=cos2theta

rArr(1-tan^2theta)/(1+tan^2theta)

=(1-sin^2theta/cos^2theta)/(1+sin^2theta/cos^2theta)xxcos^2theta/cos^2theta

=(cos^2theta-sin^2theta)/(cos^2theta+sin^2theta)

=cos^2theta-sin^2theta=cos2theta