How do you shift and graph y=-3+sinxy=3+sinx?

1 Answer
Oct 31, 2014

The period of sinsin is 2pi2π.

The -33 is applied to the result of sin(x)sin(x) which affects the yy value.

All of the points will be shifted down 33 units.

Rely on your knowledge of the unit circle to figure out the values of sin on the xx and yy axis.

f(0)=-3+sin(0)=-3+0=-3 -> (0,-3)f(0)=3+sin(0)=3+0=3(0,3)

f(pi/2)=-3+sin(pi/2)=-3+1=-2 -> (pi/2,-2)f(π2)=3+sin(π2)=3+1=2(π2,2)

f(pi)=-3+sin(pi)=-3+0=-3 -> (pi,-3)f(π)=3+sin(π)=3+0=3(π,3)

f((3pi)/2)=-3+sin((3pi)/2)=-3-1=-4 -> ((3pi)/2,-4)f(3π2)=3+sin(3π2)=31=4(3π2,4)

f(2pi)=-3+sin(2pi)=-3+0=-3->(2pi,-3)f(2π)=3+sin(2π)=3+0=3(2π,3)

Enter the function into the calculator

enter image source here

Set the interval, XMIN and MAX , from [0,2pi] -> 2pi=6.283185307[0,2π]2π=6.283185307

enter image source here

Press the GRAPH button

enter image source here