The period of sinsin is 2pi2π.
The -3−3 is applied to the result of sin(x)sin(x) which affects the yy value.
All of the points will be shifted down 33 units.
Rely on your knowledge of the unit circle to figure out the values of sin on the xx and yy axis.
f(0)=-3+sin(0)=-3+0=-3 -> (0,-3)f(0)=−3+sin(0)=−3+0=−3→(0,−3)
f(pi/2)=-3+sin(pi/2)=-3+1=-2 -> (pi/2,-2)f(π2)=−3+sin(π2)=−3+1=−2→(π2,−2)
f(pi)=-3+sin(pi)=-3+0=-3 -> (pi,-3)f(π)=−3+sin(π)=−3+0=−3→(π,−3)
f((3pi)/2)=-3+sin((3pi)/2)=-3-1=-4 -> ((3pi)/2,-4)f(3π2)=−3+sin(3π2)=−3−1=−4→(3π2,−4)
f(2pi)=-3+sin(2pi)=-3+0=-3->(2pi,-3)f(2π)=−3+sin(2π)=−3+0=−3→(2π,−3)
Enter the function into the calculator
Set the interval, XMIN and MAX , from [0,2pi] -> 2pi=6.283185307[0,2π]→2π=6.283185307
Press the GRAPH button