How do you prove the identity [1-sinx]/secx = (cos^3x)/(1+sinx)?

[1-sinx]/secx = (cos^3x)/(1+sinx)

1 Answer
Apr 7, 2018

After editing the question:
(1-sinx)/secx =color(red) (cos3x)/(1+sinx)to (1-sinx)/secx = color(red)(cos^3x)/(1+sinx)

Explanation:

We know that,

color(green)((1)sin^2theta+cos^2theta=1=>cos^2theta=1- sin^2theta

color(green)((2)sectheta=1/costheta

We have to prove,

(1-sinx)/secx = (cos^3x)/(1+sinx)

We take

LHS=(1-sinx)/secx

=(1-sinx)/secx xx(1+sinx)/(1+sinx)

=1/(secx)xx(1-sin^2x)/(1+sinx)...toApply (1) and (2)

=cosx*cos^2x/(1+sinx)

=cos^3x/(1+sinx)

=RHS