Choose any #epsilon > 0# and evaluate the difference:
#abs (sqrt(x+1) -2)#
we have:
#abs (sqrt(x+1) -2) = abs ( (sqrt(x+1) -2) (sqrt(x+1) +2))/ (sqrt(x+1) +2)#
#abs (sqrt(x+1) -2) = abs ( (x+1) -4 )/ (sqrt(x+1) +2)#
#abs (sqrt(x+1) -2) = abs ( x-3)/ (sqrt(x+1) +2)#
Now consider that:
#1/(sqrt(x+1) +2)#
is a strictly decreasing function, so for #x in (3-delta, 3+delta)#:
#1/(sqrt(x+1) +2) <= 1/(sqrt(3-delta+1) +2)= 1/(sqrt(4-delta) +2)#
and clearly:
#abs (x- 3) <= delta#
so:
#abs (sqrt(x+1) -2) <= delta/(sqrt(4-delta) +2)#
So, if we choose #delta_epsilon# such that:
#delta_epsilon/(sqrt(4-delta_epsilon) +2) < epsilon#
we have:
#abs (x-3) < delta_epsilon => abs (sqrt(x+1) -2) < epsilon#