How do you prove that sin5x=sinx(cos22xsin22x)+2cosxcos2xsin2x?

1 Answer
Oct 22, 2016

Using the angle addition identity:

  • sin(α+β)=sin(α)cos(β)+cos(α)sin(β)

along with the double angle identities:

  • sin(2θ)=2sin(θ)cos(θ)
  • cos(2θ)=cos2(θ)sin2(θ)

we have

sin(5x)=sin(x+4x)

=sin(x)cos(4x)+cos(x)sin(4x)

=sin(x)cos(22x)+cos(x)sin(22x)

=sin(x)(cos2(2x)sin2(2x))+cos(x)(2sin(2x)cos(2x))

=sin(x)(cos2(2x)sin2(2x))+2cos(2x)cos(2x)sin(2x)