How do you prove that sin5x=sinx(cos22x−sin22x)+2cosxcos2xsin2x?
1 Answer
Oct 22, 2016
Using the angle addition identity:
sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
along with the double angle identities:
sin(2θ)=2sin(θ)cos(θ) cos(2θ)=cos2(θ)−sin2(θ)
we have
=sin(x)cos(4x)+cos(x)sin(4x)
=sin(x)cos(2⋅2x)+cos(x)sin(2⋅2x)
=sin(x)(cos2(2x)−sin2(2x))+cos(x)(2sin(2x)cos(2x))
=sin(x)(cos2(2x)−sin2(2x))+2cos(2x)cos(2x)sin(2x)