How do you prove (tanx-sinx)/(2tanx)=sin^2(x/2)?

1 Answer
Aug 23, 2016

Refer to the Proof in Explanation.

Explanation:

"The L.H.S."=(tanx-sinx)/(2tanx)

=(sinx/cosx-sinx)/{(2sinx)/cosx}

={cancel(sinx)(1/cosx-1)}{cosx/(2cancel(sinx))}

={(1-cosx)/cancel(cosx)}(cancel(cosx)/2)

=(1-cosx)/2

Since, 1-cos2theta=2sin^2theta,

"The L.H.S."=(2sin^2(x/2))/2=sin^2(x/2)= "The R.H.S."

Hence, the Proof.

Enjoy Maths.!