How do you prove (tanx+sinx)/(2tanx)=cos^2(x/2)?

3 Answers
Apr 28, 2018

We'll need these two identities to complete the proof:

tanx=sinx/cosx

cos(x/2)=+-sqrt((1+cosx)/2)

I'll start with the right side, then manipulate it until it looks like the left side:

RHS=cos^2(x/2)

color(white)(RHS)=(cos(x/2))^2

color(white)(RHS)=(+-sqrt((1+cosx)/2))^2

color(white)(RHS)=(1+cosx)/2

color(white)(RHS)=(1+cosx)/2color(red)(*sinx/sinx)

color(white)(RHS)=(sinx+sinxcosx)/(2sinx)

color(white)(RHS)=(sinx+sinxcosx)/(2sinx)color(red)(*(1/cosx)/(1/cosx))

color(white)(RHS)=(sinx/cosx+(sinxcosx)/cosx)/(2sinx/cosx)

color(white)(RHS)=(tanx+sinx)/(2tanx)

color(white)(RHS)=LHS

That's the proof. Hope this helped!

Apr 28, 2018

We seek to prove the identity:

(tanx+sinx)/(2tanx) -= cos^2(x/2)

Consider the LHS of the expression, and use the definition of tangent:

LHS = (tanx+sinx)/(2tanx)

\ \ \ \ \ \ \ \ = (sinx/cosx+sinx)/(2(sinx/cosx))

\ \ \ \ \ \ \ \ = (cosx/sinx) ((sinx/cosx+sinx)/2)

\ \ \ \ \ \ \ \ = ( cosx/sinx * sinx/cosx + cosx/sinx* sinx)/2

\ \ \ \ \ \ \ \ = ( 1 + cosx )/2

Now, Consider the RHS, and use the identity:

cos2A -= 2cos^2A - 1

Giving us:

cosx -= 2cos^2(x/2) - 1 => 1+cosx -= 2cos^2(x/2)

:. cos^2(x/2) = (1+cosx)/2 = RHS

Thus:

LHS = RHS => (tanx+sinx)/(2tanx) -= cos^2(x/2) \ \ \ QED

May 6, 2018

LHS=(tanx+sinx)/(2tanx)

=(cancel(tanx)(1+sinx/tanx))/(2cancel(tanx))

=(1+cosx)/2=(2cos^2(x/2))/2=cos^2(x/2)=RHS