How do you prove tanx + cotx = secx cscx?

1 Answer
Nov 28, 2015

Please follow the step below

Explanation:

Given:
tan x+ cot x= sec x *cscx

Start on the right hand side, change it to sinx ; cosx

sinx/cosx + cosx/sinx = sec x *csc x

color(red)([sinx/sinx])*(sinx/cosx) + color(blue) [cosx/cosx]*cosx/sinx = sec x*cscx

[sin^2x+cos^2x]/(sinx*cosx) = sec x *cscx

1/(sinx *cos x) = sec x *csc x

(1/sinx)(1/cosx) = secx*cscx

sec x *csc x = secx *csc x

Prove completed!

*sin^2x + cos^2x= 1

*1/sinx = csc x ; 1/cosx = secx