How do you prove tan^2(1/2theta)=(tantheta-sintheta)/(tantheta+sintheta)?

1 Answer
Oct 5, 2016

see below

Explanation:

tan^2(1/2 theta)=(tan theta-sin theta)/(tan theta + sin theta)

Right Side =(tan theta-sin theta)/(tan theta + sin theta)

=(sin theta / cos theta -sin theta)/(sin theta/cos theta + sin theta)

=((sin theta-sin theta cos theta) / cos theta) / ((sin theta+sin theta cos theta)/cos theta)

=(sin theta-sin theta cos theta) / cos theta * cos theta/(sin theta+sin theta cos theta)

=(sin theta-sin theta cos theta)/(sin theta+sin theta cos theta)

=(sin theta(1-cos theta))/(sin theta(1+cos theta))

=(1-cos theta)/(1+cos theta)

=(tan (1/2 theta))^2

=tan^2(1/2 theta)

= Left Side