How do you prove (sinx + cosx)(tanx + cotx)=secx + cscx?

2 Answers
May 28, 2018

color(green)[(sinx + cosx)(tanx + cotx)=secx-cosx+cosx+sinx+cscx-sinx=secx+cscx]

Explanation:

show below:

color(blue)[(sinx + cosx)(tanx + cotx)=secx + cscx]

L.H.S=color(blue)[(sinx + cosx)(tanx + cotx)]=

sinx*tanx+sinx*cotx+cosx*tanx+cosx*cotx=

sin^2x/cosx+cosx+sinx+cos^2x/sinx=

(1-cos^2x)/cosx+cosx+sinx+(1-sin^2x)/sinx=

1/cosx-cos^2x/cosx+cosx+sinx+1/sinx-sin^2x/sinx=

secx-cosx+cosx+sinx+cscx-sinx=color(blue)[secx+cscx]=R.H.S

color(red)["Useful Trigonometric Identities"]

cos^2theta+sin^2theta=1

1+tan^2theta=sec^2theta

sin2theta=2sin theta cos theta

cos2theta=cos^2theta-sin^2theta=2cos^2theta-1=1-2sin^2theta

cos^2theta=1/2(1+cos2theta)

sin^2theta=1/2(1-cos2theta)

tanx=sinx/cosx

cotx=cosx/sinx

1/cosx=secx

1/sinx=cscx

May 28, 2018

Please see below.

Explanation:

We know that,

color(red)((1)tantheta=sintheta/costheta and cottheta=costheta/sintheta

color(blue)((2)sin^2theta+cos^2theta=1

color(violet)((3)1/sintheta=csctheta and 1/costheta=sectheta

We have to prove,

(sinx+cosx)(tanx+cotx)=secx+cscx

We take Left Hand Side :

LHS=(sinx+cosx)(tanx+cotx)...tocolor(red)(Apply(1)

LHS=(sinx+cosx)(sinx/cosx+cosx/sinx)

LHS=(sinx+cosx)((sin^2x+cos^2x)/(sinxcosx))

LHS=(sinx+cosx)(1/(sinxcosx))...tocolor(blue)(Apply(2)

LHS=sinx/(sinxcosx)+cosx/(sinxcosx)

LHS=1/cosx+1/sinx...tocolor(violet)(Apply(3)

LHS=secx+cscx

LHS=RHS