show below:
color(blue)[(sinx + cosx)(tanx + cotx)=secx + cscx]
L.H.S=color(blue)[(sinx + cosx)(tanx + cotx)]=
sinx*tanx+sinx*cotx+cosx*tanx+cosx*cotx=
sin^2x/cosx+cosx+sinx+cos^2x/sinx=
(1-cos^2x)/cosx+cosx+sinx+(1-sin^2x)/sinx=
1/cosx-cos^2x/cosx+cosx+sinx+1/sinx-sin^2x/sinx=
secx-cosx+cosx+sinx+cscx-sinx=color(blue)[secx+cscx]=R.H.S
color(red)["Useful Trigonometric Identities"]
cos^2theta+sin^2theta=1
1+tan^2theta=sec^2theta
sin2theta=2sin theta cos theta
cos2theta=cos^2theta-sin^2theta=2cos^2theta-1=1-2sin^2theta
cos^2theta=1/2(1+cos2theta)
sin^2theta=1/2(1-cos2theta)
tanx=sinx/cosx
cotx=cosx/sinx
1/cosx=secx
1/sinx=cscx