How do you prove (sinx+cosx)/sinx - (cosx-sinx)/cosx = sec x csc x?

1 Answer
Apr 24, 2018

Please see below.

Explanation:

We know that,

color(red)((1)cos^2x+sin^2x=1

color(blue)((2)1/cosx=secx and 1/sinx=cscx

Here,

(sinx+cosx)/sinx-(cosx-sinx)/cosx=secxcscx

We take,

LHS=(sinx+cosx)/sinx-(cosx-sinx)/cosx

=(cosx(sinx+cosx)-sinx(cosx-sinx))/(sinxcosx)

=(cancel(sinxcosx)+cos^2x-cancel(sinxcosx)+sin^2x)/(sinxcosx

=color(red)((cos^2x+sin^2x))/(sinxcosx)...tocolor(red)(Apply(1)

=color(red)(1)/(sinxcosx)

=color(blue)(1/cosx*1/sinx...tocolor(blue)(Apply(2)

=color(blue)(secxcscx

=RHS