How do you prove (sinx+cosx)/(secx+cscx)=sinx/secx?

1 Answer
Aug 25, 2016

See below.

Explanation:

Apply the following identities:

sectheta = 1/costheta

csctheta = 1/sintheta

Now, simplify both sides using the given identities:

(sinx + cosx)/(1/cosx + 1/sinx) = sinx/(1/cosx)

(sinx + cosx)/((sinx + cosx)/(sinxcosx)) = sinxcosx

sinx + cosx xx (sinxcosx)/(sinx + cosx) = sinxcosx

cancel(sinx + cosx) xx (sinxcosx)/(cancel(sinx+cosx)) = sinxcosx

sinxcosx = sinxcosx

Identity proved!!

Hopefully this helps!