How do you prove: [(sinx/cosx) +(cosx/sinx)] = sinx^2+cosx^2? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer sente Mar 26, 2016 The given identity is false. Explanation: Consider x = pi/4 sin(pi/4)/cos(pi/4)+cos(pi/4)/sin(pi/4) = (sqrt(2)/2)/(sqrt(2)/2)+(sqrt(2)/2)/(sqrt(2)/2) = 1+1=2 but sin((pi/4)^2)+cos((pi/4)^2) = sin(pi^2/16)+cos(pi^2/16) ~~1.394 Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 2177 views around the world You can reuse this answer Creative Commons License