How do you prove (sinx-2sin2x+sin3x)/(sinx+2 sin2x+sin3x)= -tan^2(x/2)sinx2sin2x+sin3xsinx+2sin2x+sin3x=tan2(x2)?

1 Answer
Jun 8, 2018

LHS=(sinx-2sin2x+sin3x)/(sinx+2 sin2x+sin3x)LHS=sinx2sin2x+sin3xsinx+2sin2x+sin3x

=(2sin2xcosx-2sin2x)/(2sin2xcosx+2 sin2x)=2sin2xcosx2sin2x2sin2xcosx+2sin2x

=-(2sin2x(1-cosx))/(2sin2x(1+cosx))=2sin2x(1cosx)2sin2x(1+cosx)

=-(2sin^2(x/2))/(2cos^2(x/2))=2sin2(x2)2cos2(x2)

= -tan^2(x/2)=RHS=tan2(x2)=RHS