How do you prove sinx/(1-cosx) + (1-cosx)/sinx = 2csc x?

1 Answer
Aug 10, 2018

Please see below.

Explanation:

We take ,

LHS=sinx/(1-cosx)+(1-cosx)/sinx

LHS=sin^2x/(sinx(1-cosx))+(1-cosx)/sinx

LHS=(1-cos^2x)/(sinx(1-cosx))+(1-cosx)/sinxto[because sin^2x+cos^2x=1]

LHS=((1-cosx)(1+cosx))/(sinx(1-cosx))+(1-cosx)/sinx

LHS=(1+cosx)/sinx+(1-cosx)/sinx

LHS=(1+cosx+1-cosx)/sinx

LHS=2/sinx

LHS=2cscx

LHS=RHS